Fuzzy Inference System In Predicting Unemployment Rate In City X Using Sugeno Method

Yosdarso Afero(1*),

(1) Informatics Management Study Program, Akademi Manajemen Informatika Dan Komputer Kosgoro
(*) Corresponding Author


Unemployment in Indonesia is currently increasing. This can be seen from the number of unemployed and workers who are looking for job vacancies either directly or through applications. The problem in this study is the lack of understanding of job applicants about the terms or criteria for applying for a job so that they are not accepted in a company. There are five criteria that must be considered in applying for a job, namely, education, vacancies, age, opportunities and knowledge. The purpose of this study is to help job seekers to complete and understand the criteria that have been set. This study uses the Sugeno method with the final result in the form of linear or constant. The working process of the Sugeno method is fuzification, inference engine, application of implication and defuzzification functions to obtain results in accordance with the decision-making system.

Full Text:



Ak, V. N. O. V. (2016). A Note To Interpretable Fuzzy Models And, 13(7), 53–65.

Apriyanti, N., & Aksad, H. (2013). Penerapan Metode Fuzzy Mamdani dalam Perencanaan Produksi Roti. Jurnal PROGRESIF, 9(1), 885–898.

Anton Setiawan Honggowibowo, Titien Sediartie (2004) Sistem Pendukung Keputusan Pemilihan Desain Interior Menggunakan Metode Analytical Hierarchy Process (Ahp) (49-55) Tinggi Teknologi Adisutjipto (STTA).

Charolina, Y. (2016). Sistem Pendukung Keputusan Untuk Menentukan Pemberian Bonus Tahunan Menggunakan Metode Fuzzy Logic Tipe Mamdani. Teknologi Informasi, 12(2), 42–53.

Fernandez, A., & Herrera, F. (2012). Linguistic Fuzzy Rules in Data Mining : Follow-Up Mamdani Fuzzy Modeling Principle. Combining Experimentation and Theory, 103–122.

Kapal, I., Kurniawan, A., Santoso, M., & Dhani, M. R. (2004). Identifikasi Bahaya Pada Pekerjaan Maintenance Kapal Menggunakan Metode HIRARC dan FTA Dengan Pendekatan Fuzzy. In Proceeding 1st Conference on Safety Engineering and Its Application Program (pp. 182–186). Politeknik Perkapalan Negeri Surabaya.

Muhammad Iqbal Dzulhaq, Rian Imani (2015) Sistem Pendukung Keputusan Pemilihan Konsentrasi Jurusan Menggunakan Fuzzy Inferrence Sistem Metode Mamdani (75-80)

Kudrat, S. N., Sibaroni, Y., & Time, F. (2016). Simulasi Pengaturan Lampu Lalu Lintas Menggunakan Cellular Automata Dan Fuzzy Inference System Traffic Light Control Simulation Using.

Shakiba, A., Hooshmandasl, M. R., Davvaz, B., & Fazeli, S. A. S. (2017). S-approximation spaces: a fuzzy approach. Iranian Journal of Fuzzy Systems, 14(2), 127–154.

Yazid, E. (2009). Penerapan Kendali Cerdas Pada Sistem Tangki Air Menggunakan. Fisika Himpunan Fisika Indonesia, 2009(Edwar Yazid), 11–23.

Suyanto. (2011). Artificial Intelligence (2nd ed.). Bandung: INFORMATIKA.

DOI: https://doi.org/10.30645/ijistech.v5i4.151


  • There are currently no refbacks.

Jumlah Kunjungan:

View My Stats

Published Papers Indexed/Abstracted By: